NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

xs100 ngày | mari slots | 3 reel slots online | 200 deposit bonus slots | 5 reel slots online | pound slots | online slot machines that pay real money | sở kiều truyện zing tv | centurion slot game | thần ẩn tập 15 | vnrom bypass | quay thu mn gio hoang dao | slot crazy | najlepsie online casino | moby dick slot | truyện tranh sex màu | h reset fo4 | casino night attire | how far is chumash casino from santa barbara | reiko kobayakawa | deutsche casinos mit bonus ohne einzahlung | empire game | vé vào casino phú quốc | game naruto truyen ky | cau tuan xsmb | linh kiện 789 com | around the world slot | live casino online canada | nieuwe casino online | ku casino fan | immortal guild slot | chat zalo me trên điện thoại | thiếu niên ca hành thuyết minh | dead target | golden goddess free slot machine | chai xịt bóng xe | xskt3mien | kinh nghiem chien thang baccarat | most secure online casino | slot pattern | nằm mơ thấy vàng |