NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lô nên tốp | new york new york hotel & casino | lazađa | ignition casino promo codes | mu88 casino | novibet casino review | jackpot party slot game free online | william hill casino club mobile | chơi casino online | online slots review | hack casino | tro choi babybus | soi cau 666 mien phi | best casino hotel in hanoi | lịch thi đấu vl 2021 | rocky gap casino | turnkey online casino business | xsmb hôm nay đánh con gì bà con ơi | king 86 | sòng bạc casino ở hà nội | cổng game slot | full slots | buran casino | sportsnation casino | evowar io | game choang club | steam poppy playtime - chapter 3 apk | airport slots | sabong | 7 vien ngoc | xoso66 | xổ số ngày 27 tháng 6 | photobooth casino | betfair live casino | viral casino | vuong quoc vang slot | box thao luan xsmn | casino trực tiếp | casino io | 2bong com | 10 no deposit slots | copa truc tiep | jungle trouble slot | casino bonus gratis senza deposito | bongdanet livescore | tai zing speed | bán cá hải tượng con 20cm | steam poppy playtime - chapter 3 apk | link sopcast bong da hom nay | vuong quoc vang slot |